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Abstract: In this paper we consider charge density waves in defective lattice structures. Just as in nondefective
lattices, we find that the Fermi surface plays an important role in supercell dimensions. In particular, a correspondence
is found between the Fermi surfaces of the defective and the nondefective lattices. The concept of an effective band
filling is introduced, which may be understood as the band filling for which the fully occupied lattice mimics the
Fermi surface of the partially occupied lattice. To demonstrate the efficacy of this method, the superstructures of
La10Se19, Cs3Te22, RbDy3Se8, and Dy65.33Se120 are studied. Fermi surfaces from both Hu¨ckel and extended Hu¨ckel
tight-binding theories allow the rationalization of the defect lattice structures found in these systems. Finally a
simple model based only on nearest neighbor interaction is found to preserve most of the essential features of the
Hückel and extended Hu¨ckel treatments.

Introduction

In the last few years, tight-binding methods have been applied
with remarkable efficacy to the rationalization and prediction
of both commensurate and incommensurate charge density
waves (CDW’s).1,2 These CDW’s modulate the sublattice atom
positions away from their ideal sublattice sites.3,4 The tight-
binding studies used to account for such CDW’s are in general
based on a calculation of the sublattice Fermi surface, followed
by the determination of those reciprocal space ork-vectors5,6

which allow maximum interaction between opposing states on
the Fermi surface.
While authors have applied this method of nestedk-vectors

to the problem of CDW’s, there has been little treatment of the
parallel problem of defective lattice CDW’s (d-CDW’s).7 A
d-CDW is one in which crystalline superstructures are produced
by an ordered pattern of vacancies over the original sublattice
in addition to any coexisting CDW’s. In this paper we show
how the method of nesting vectors can be applied to the defect
lattice CDW problem. We apply this method to both the one-
dimensional chain and the two-dimensional square lattice.
These latter results are directly applied to the square lattice
d-CDW’s found in La10Se19,8 Cs3Te22,9 RbDy3Se8,10 and Dy65.33-
Se120.11

Effect of Site Defects on Band Structure

Both the extended Hu¨ckel12,13(eH) and Hu¨ckel methods have
been applied to CDW’s in systems without site defects. In these
calculations one considers a tight-binding Hamiltonian for which
the off-diagonal form is given by the Wolfsberg-Helmholz
approximation:14

where i and j are atomic orbital indices,Hii and Hjj are
predetermined Coulombic integrals,Sij is the overlap integral
betweeni and j, andK is a constant generally set at the value
1.75. In the case of Hu¨ckel theory one solves the equationHψ
) Eψ while for the eH method one solvesHψ ) ESψ. One
generally considers all interatomic interactions between atoms
less than 10 Å apart.
For systems with translational symmetry, the solutions of the

Hückel or eH equations are Bloch functions of the form

whereφ( rbi) is an atomic orbital located at the positionrbi in
real space, andkB is the crystal momentum vector. The vector
kB is in the same units as those used by crystallographers when
describing reciprocal space.15

The use of suchkB-vectors allows one to reduce the infinite
dimensional crystalline problem to one of dimensionN, where
N represents the number of atomic orbitals located inside the
crystallographic unit cell. For example, in the case of a zigzag
chain of s orbitals,1,

there are two orbitals per unit cell and the corresponding
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Hamiltonian is

whereR and â are the standard Hu¨ckel R and â terms, and
where we have chosen one unit cell to be of length 1.

1-D d-CDW

Our discussion of d-CDW systems will be facilitated by first
reviewing the nondefective CDW model. Here we consider an
infinite linear chain of px orbitals running in thex direction.
Consider the one atom primitive unit cell and nearest neighbor
interactions only. The band structure of this system is shown
in Figure 1. In Figure 1, we also include a band filling,z (0 e
z e 1), wherez ) 0 and 1 denote respectively the empty and
fully occupied bands. Filled orbitals are represented by the thick
line portion of the sinusoidal curve, while empty crystal orbitals
are represented by thin lines. The intersection between these
thick and thin lines represents the 1-D Fermi surface. Two
vectors connect points on the Fermi surface. In Figure 1 they
are shown ask1 andk2. It may be seen thatk1 + k2 ) 1 and
that k2 corresponds toz, the fractional band filling.
In order for the HOMO and LUMO (highest occupied and

lowest unoccupied orbitals) to mix, a lowering of symmetry
must occur which causes eitherk1 or k2 to become a new
reciprocal crystal lattice vector. For example, in the case where
z ) 1/3, then k2 ) 1/3. As the original reciprocal lattice
corresponds to integer values along thek axis shown in Figure
1, the newk2 vector therefore causes a tripling of the number
of permissible diffraction reflections and thus a tripling of the
unit cell length. Thisk2 vector is the crystal momentum vector
of a wave of the form cos (2πk2r + θ) wherer represents the
coordinates with the unit length andθ is an arbitrary phase angle.
It is instructive to look at the amplitude of this wave at true
atomic sites. For illustrative purposes we chooseθ ) π/2. As
is shown in Figure 2a, one of three atom sites in the new unit
cell lies at a node while the remaining two atoms lie in zones
of alternately positive and negative wave amplitudes. If we
now consider these values as shifts in the position of the atoms
along thex direction,∆x (positive amplitudes) +∆x; negative
amplitudes) -∆x), then as is shown in Figure 2a, this wave
corresponds to the formation of somewhat isolated trimers along
the chain. As there are three orbitals per trimer and the band
filling was assumed to be1/3, there is therefore a gap which

has opened up at the Fermi surface. There is a second parallel
solution for the choice of the nesting vector,k1. Often in one
dimension, thek vector which is shortest corresponds most
naturally to the lowest energy distortion. For the case ofz )
1/3, the k2 vector is1/3, while k1 ) 2/3. Above the half-filled
band, however,k1 is shorter thank2. One useful way of viewing
the change fromk2 to k1 as the key branch of the Fermi surface
is to recall that in alternate systems like the 1-D (or square
lattice), for each and every bonding orbital with net bonding
energyE, there is an antibonding orbital with an equal and
opposite antibonding energy,-E. One consequence of this
symmetry is that a system withN electrons has exactly the same
Fermi surface shape as one withN holes. Let us definet as the
fraction of holes in the system witht ≡ 1 - z. We find for
example the system for whicht ) 2/5 has the same Fermi surface
as the system wherez) 2/5. Forze 1/2, it is most convenient
to view the CDW’s or d-CDW’s in the electron picture while
for z g 1/2, the hole picture is more convenient.
We now consider as a first example of a d-CDW a defect

lattice of this same linear chain in which every fourth atom has
been removed. This pattern is illustrated in Figure 2b. As can
be seen in the figure, this defect pattern leads to the formation
of relatively isolated trimers and hence will cause band gaps at
fractional band fillings of1/3 and2/3. The overall effect of this
defect pattern is to create the band gaps at the same band fillings
as those found in the nondefect (displacive) CDW shown in
Figure 2a.
This example leads to a natural question of whether it is

possible in general to find a connection between the well-
understood displacive CDW’s and the less well-characterized
defect CDW’s. As we will show below rigorous analogies
between the two types of CDW’s exist. We consider first the
linear chain of px orbitals and as the chemical systems studied
in this paper are electron rich, we consider systems wherezg
1/2 or equivalentlyt e 1/2.
Theorem: Consider a defective linear chain of px orbitals

running in thex-direction with nearest neighbor interactions only
and with lattice sites placed at unit distances apart. Let the
fractional site occupation (i.e., the fraction of all lattice sites
which are filled) beq and the fractional hole filling bet where
t e 1/2. Consider the CDW for the nondefective lattice, cos
(2πk′1r + θ) wherek′1 ≡ t′ ≡ qt. Place defect sites at the
maximal values of this function, choosingθ in such a way so
that this assignment is unambiguous. Then the resulting defect
structure has a band gap at the hole filling oft (i.e., at a band-
filling of z ) 1 - t).
Before proving this theorem, we give an illustrative example

of its use. As an example, consider the caseq ) 2/3 andz )
2/3. As z> 1/2, we use the hole formalism. We findt ) 1 -
2/3 ) 1/3 and thatt′ ) (1/3)(2/3) ) 2/9. In Figure 3 we plot the
function cos(2πr(2/9) + π/2). We further place the actual defects
at those values where this wave has its greatest amplitude. As
there are three defects per nine sites, we choose the three sites
with greatest wave amplitude. Figure 3 shows the resultant
structure consists of two trimers separated by alternately one
and two neighboring defect sites. Asz) 2/3, the four resulting
bonding or nonbonding orbitals are filled while the remaining
two antibonding orbitals remain empty. There is therefore a

(15) Stout, G. H.; Jensen, L. H.X-ray Structure Determination. A
Practical Guide, 2nd ed.; John Wiley & Sons: New York, 1989.

Figure 1. Energy of an infinite chain of px orbitals as a function of
reciprocal space index,k. Thick portions of the sinusoidal curves
represent filled bonding orbitals.

Figure 2. (a) CDW for the one-dimensional chain wherek2 ) 1/3.
Arrows indicate shifts in atomic positions going from the 1-atom subcell
to the 3-atom supercell. (b) d-CDW whereq) 3/4. Note the equivalent
formation of trimers in parts a and b.

H(kB) ) (R â(1+ e2πik)

â(1+ e-2πik) R ) (3)

Figure 3. One unit cell of the one-dimensional defect latice pattern
for z) 2/3 andq ) 2/3. Defect sites represented by dotted circles are
placed at sites with maximal wave amplitude.
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band gap at the Fermi energy. Similar patterns are found for
other choices of the phase angle,θ. We now prove the general
result.
Proof: Let the fractional site occupancyq ) N/M and the

fractional hole band fillingt ) K/L whereN andM as well as
K andL are relatively prime integers. By assumptiont′ ) NK/
ML. We may therefore consider a unit cell of lengthML. In
this unit cell the wave cos(2πt′r + θ) hasNKmaxima. Assume
for now there are enough defects to place one near every
maximum. Therefore each unit cell has been divided intoNK
fragments of near equal length. There are a total ofq‚ML atoms
in the unit cell. Asq) N/M, the total number of atoms equals
NL. The average length of each segment is the total number
of atoms divided by the total number of fragments. The average
length of each segment isNL/NK ) L/K. Now letL ) jK + i
wherei < K. We therefore can haveNi segments of lengthj
+ 1 andN(K - i) segments of lengthj. This is the most equal
partitioning of the segments and hence compatible with the
maxima in the plane wave CDW. Now we need to prove there
is a band gap between the uppermostNK of these orbitals and
the other orbitals as the total number of orbitals isNL (and as
t ) K/L ) NK/NL). Recall that the molecular orbital energies
of a segment of lengthj are 2â cos(πm/(j + 1)), wherem is an
integer running from 1 toj. Therefore between each energy
level in the segment of lengthj + 1 there is one and only one
energy level of the segment of lengthj. In particular, theNK
most antibonding orbitals of theNi segments of lengthj + 1
andN(K - i) segments of lengthj correspond to the single most
antibonding orbitals of each and every segment. These most
antibonding orbitals are seperated in energy from all the other
orbitals and hence there is a band gap at hole fillingt ) K/L as
we wished to demonstrate.
The above proof requires that there is a defect near every

maximum of the CDW in theML-unit cell. However the
number of defects may be smaller than this number so that there
are maxima for which there are no corresponding defects. In
such cases it is convenient to introduce a new fictitious defect
lattice where a number of defective sites,D, are placed at the
maxima for which hitherto there were no corresponding defects.
The length of the fictitious unit cell is nowM′L whereM′ ) M
+ D/L. The fictitious cell fractional site occupation isN/M′
and the fictitious cell fractional hole filling isK/L. The total
number of atoms in the fictitious cell isNL (NL ) (N/M′)M′L)
and the average length of each segment isL/K. By the
arguments outlined in the preceding paragraph, the fictitious
cell has a band gap att ) K/L.
We now need to demonstrate that in going from the fictitious

cell to the true one (which does not contain any of theD
fictitious lattice sites) that this band gap att ) K/L is preserved.
The difference between the fictitious system and the true system
is that in the fictitious system there are segments of either length
j or length j + 1 which have combined to form segments of
roughly doubled size with lengths 2j, 2j + 1, or 2j + 2. In the
fictitious system only the top most antibonding orbital of each
segment is unfilled. Therefore we need only show that the two
highest orbitals of the doubled segment lie above the second
highest energy orbital of the halved segments and that the third
highest energy orbital of the doubled segment lies beneath the
highest energy orbital of the halved segment. This is readily
done as we recall that for a segment of lengthj, its molecular
orbital energies are 2â cos(πm/(j + 1)) wherem is an integer
running from 1 toj. We can in the same way consider tripled
and other higher line segment lengths. QED.
The above theorem introduces the quantityt′ ) qt. We may

definet′ as the effective hole filling. The band gaps of the true

hole filling, t, for the defect lattice can be brought into
correspondence with the CDW of the effective hole filling,t′,
of the nondefect lattice. We may similarly define an effective
band filling, z′, wherez′ ) 1 - t′. One may also prove the
following converse result.
Theorem: Consider the same system of px orbitals as in the

preceding case, with fractional site and hole occupancies of
respectivelyq andt. Assume that there is a defect lattice with
a band gap at the Fermi energy. The unit cell of this defect
lattice is a multiple of the wavelength of the CDW for the
nondefect lattice with hole fillingt′ ≡ q‚t.
Proof: Assume that the length of the primitive unit cell isM

and thatN sites in the primitive cell are occupied. Thereforeq
) N/M. By our assumption of a band gap,t must be a rational
fraction ofN. We therefore can find an integral valueK such
that t ) K/N. Thereforet′ ) (N/M)(K/N) ) K/M. A CDW for
a hole filling of t′ has a wavelength ofM/K. Recall the unit
cell is of lengthM. QED.
These two results together show that there is a close

connection between one-dimensional defect lattices and the
CDW of a nondefect lattice with an effective hole-fillingt′. In
particular the effective hole-filling CDWmay be used to produce
a defect pattern with a requisite band gap. Furthermore, this
CDW based solution is one of the simplest such defect patterns,
as all other patterns have unit cells which are integral multiples
of this solution.
It is instructive to consider the implications of an effective

hole filling versus a true hole filling. There is an alternate way
of viewing the effective hole filling. Fort e 1/2, the effective
hole filling also corresponds to the case where all vacant sites
of the defect lattices are now occupied with fictitious atoms
with a complete valence shell of electrons. Thus in the previous
example whereq) 2/3 andz) 2/3, we have replaced the missing
1/3 lattice sites with atoms for whichz) 1. The new effective
band filling is z′ ) (2/3)(2/3) + (1/3)1 ) 7/9 and the effective
hole filling is 2/9. This is the same value as given above in the
previous discussion of Figure 3.
Generalizing this result, the effective hole method outlined

above corresponds to the following self-consistent strategy to
find defect-distortion patterns. We note the band gaps between
occupied and unoccupied levels in this paper are generally
betweenσ nonbonding molecular orbitals andσ* antibonding
orbitals. We thus seek to find defect-distortion patterns that
open a band gap between such classes of orbitals, i.e., we seek
to avoid orbitals that have a combination ofσ nonbonding and
σ* antibonding character. Therefore, as done above, we place
at each defective site in the lattice an atom, with all its valence
orbitals filled, which by a displacive distortion has no bonds
with its neighbors. One then calculates at this new electron
count the Fermi surface of the corresponding nondistorted,
nondefect system. From such a Fermi surface we deduce ak1
or k2 vector which nests this Fermi surface to itself. We can in
principal find the lowest energy distortion patterns corresponding
to these vectors. These distortion patterns in general lead to a
band gap between occupied and unoccupied levels. If such a
structure has isolated atoms, i.e., atoms which have no bonds
associated to them, then the removal of such atoms from the
structure maintains the overall band gap. This is so as such
isolated atoms are purely nonbonding and therefore a priori their
orbitals lie among the occupied bands. If the number of such
isolated atoms is equal or greater to the original number of
defects in the system, we can in this way generate a defect lattice
pattern with a band gap at the required electron count and with
the required defect concentration. This method may be seen
to be self-consistent as it requires the addition of fictitious atoms,
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followed by their removal, in order to find a distorted defective
lattice which is overall insulating in nature. This is the overall
approach taken in this paper. Finally it should be noted that
the use of isolated atoms as fictitious units may prove important
as the systems studied in this paper are electron rich. Therefore
the few unoccupied orbitals in this system have a large number
of occupied orbitals with which to interact and the removal of
one or two of these does not completely change the overall
bonding picture.

Square Lattice d-CDW’s

We consider a planar square lattice of main group atoms.16

In this example we consider only the p orbitals on each atom.
We further consider only first neighbor interactions and onlyσ
bonds. We therefore consider only nearest neighbor px-px, py-
py, and px-py overlaps, all of which are equal and may be set
equal to the same overlap value. In this paper we shall call
this approximation theσ model. We consider the two-atom
square-lattice unit cell,217

In theσ model the pz orbital is a nonbonding orbital and can
be ignored as it is well below the energy of the Fermi level.
There are therefore just two active orbitals per atom, and
there are a total of four atomic orbitals per unit cell. For every
kB-vector there are therefore four crystal orbitals. The energies
of these four orbitals are:

whereâ is the strength of theσ bond between neighboring p
orbitals and where thekB-vector has two indiceskx andky as it
corresponds to a two-dimensional vector.

We illustrate the shape of theσ-model Fermi surface forz)
2/3 and4/5 in Figure 4. The Fermi surface lies on the diagonal
lines shown in this figure. The points X and M on this figure
correspond respectively to thekB-vectors: (1/2, 0) and1/2, 1/2).
Integral values of thekB-vector correspond to the pointΓ. To
compare these vectors with those found in diffraction experi-
ments, we note the two-atom square lattice allows diffraction
to occur atΓ vectors only, i.e., (h, k), whereh andk must be
integers and in addition whereh + k equals an even number.
This latter condition is due to the fact that2 is a centered cell.
In Figure 4a we note the location of fourΓ vectors, (0, 0), (1,
0), (0, 1), and (1, 1). We also show in Figure 4c the extended
Hückel Fermi surface for K0.33Ba0.67AgTe2 which was calculated
using valence s and p orbitals fitted to singleú-Slater type
orbitals, with interactions between atoms up to those 10 Å apart
considered. K0.33Ba0.67AgTe2 has tellurium square nets18 in
which the band filling of the px and py orbitals is z ) 2/3.
Therefore the results in Figure 4c may be directly compared
with the idealized Fermi surface shown in Figure 4a. It may
be seen that there is similarity between these Fermi surfaces.
In the case of the full eH treatment, however, the Fermi surface
deviates in a sinusoidal way from the straight line found by the
σ model. This has an important consequence. In parts a and
c of Figure 4 we indicate the vectorskBM, which are the
maximal nesting vectors. For the simpleσ model, as all the
Fermi surfaces lie on diagonal line, the vectorkBM connects
every point in the Fermi surface to a corresponding point on
the Fermi surface. This vector therefore corresponds to the
distortion which allows maximal HOMO-LUMO coupling. By
contrast, nesting vectors in the eH model depend explicitly on
the observed sinusoidal variations. We therefore take the
average of the nesting vectors to find the maximal nesting vector.
We find this average nesting vector is (0.35, 0). There is
therefore a shift of 0.02 inkBM-vector length in going from the
σ model to the full eH picture. In Table 1 we compare these
results with those found experimentally. It can be seen that
the average error of this method is 0.03 reciprocal lattice units.
The agreement between theory and experiment for both theσ
model and the full eH picture are roughly of equal quality.
From the energy expressions given in eqs 4 it is possible

within the σ model to derive a simple expression forkBM as a
function of z or t:

(16) A discussion of the square net is given in: Tremel, W.; Hoffmann,
R. J. Am. Chem. Soc. 1987, 109, 124.

(17) It proves most convenient to consider the two atom square lattice,
as in many cases, the actual crystalline superstructure of defective square
lattices are not known. Previously published experimental results are
presented in terms of the known substructure which is generally found to
be the two atom per unit cell square lattice,2.

(18) Li, J.; Zhang, X.; Foran, B.; Lee, S.; Guo, H.; Hogan, T.; Kannewurf,
C. R.; Kanatzidis, M. G.J. Am. Chem. Soc. Submitted for publication.

(19) Bénazeth, S.; Carre´, D.; Laruelle, P.Acta Crystallogr. 1982, B38,
33.

(20) Marcon, J.; Pascard, R.C. R. Acad. Sci. Paris 1968, 266, 270.
(21) In the case of La10Se19, the chalcogen atoms found between the

defective square lattice layers are found to be 3.68 Å distant from the other
Se atoms.

Figure 4. Fermi surface of aσ-model 2-D square lattice forz) 2/3 (a) and4/5 (b). The Fermi surface is plotted as a function of reciprocal space.
In part a the reciprocal lattice indices are given atΓ. The Fermi surface is along all diagonal lines in the figure. In (c) we show the eH Fermi
surface for K0.33Ba0.67AgTe2 wherez has the nominal value2/3.

E1 ) 2â cos[π(kx + ky)]

E2 ) 2â cos[π(ky - kx)]

E3 ) -E2

E4 ) -E1 (4)
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|In particular, the direction ofkBM is in the purea* direction (or
by symmetry in the pureb* direction) and its length is
proportional to the number of electrons forz e 1/2, or to the
number of holes forz > 1/2.
Another case of particular interest is the example wherez)

3/4, i.e., the px and py bands are3/4 filled. For this valuekBM )
(1/2, 0) and one would expect a real space superstructure two
times the size of the original square lattice in theab direction.
This corresponds with known observed superstructures. In
LaSe2 and CeSe2 the square lattice atoms have a net charge of
-1 each. If one completely fills both the low-energy 4s and
the nearly nonbonding pz orbital, the px and py band is3/4 filled.
It is well-established that the square lattice in these systems
(which contains no site defects) has a doubled square lattice
superstructure.19,20 Therefore as shown in Table 1 the agreement
between theσ model and experiment is in this case exactly
correct.
These results for nondefect CDW’s may be directly carried

over to the case of defect CDW’s. To do so we apply the
effective band-filling or hole-filling formalism. For example,
considerz) 1/2 andq ) 2/3. As z) 1/2, we may apply either
picture. For the former view we takez′ ) zqwhile in the latter
one we sett′ ) tq. In either case we find the samekBM equal
to (1/3, 0).
One can also find direct connections between the band gaps

of the defect square lattice and those for the nondefective lattice
with effective hole filling,t′.
Theorem:Consider a defective square lattice in thexyplane

with lattice sites placed unit distances apart. Letq) fractional
site occupation andt ) fractional hole filling. Assume that
there are a px and py orbital at every site and that there are only
nearest neighborσ interactions in the system. Assume both
that there is a band gap at the Fermi energy and that there is
only one defective site per primitive unit cell. Multiples of the
defect structure’s reciprocal lattice nest the CDW of the
nondefect lattice with effective hole filling,t′.
Proof: As the defect structure has a band gap, there must be

a defect site in any row or column of the defect structure; an
infinite linear chain is gapless. Consider two defects which lie
in the same row and for which there is no additional defect
between them. Let the distance between these two defect sites
beM. Define these points as (0, 0) and (M, 0). Now consider

the row directly adjacent to this first row. Choose the defect
atom which is closest to the defect site at the origin. This third
defect site can be set to lie at (N, 1). We thus construct a unit
cell with basis vectorsab ) (M, 0) andbB ) (N, 1). This cell is
primitive as by construction no additional defect atom can lie
on the borders or interior of the cell. The defect structure
therefore consists of linear fragments all of lengthM - 1 all
running in the horizontal direction, and the area of the defect
primitive cell is M. Furthermore, we may follow the same
construction in the columnar direction. As the areas of primitive
unit cells are equal we conclude that the defect structure also
consists of linear fragments all of lengthM - 1 all running in
the vertical direction. We see therefore that as there is a band
gap at the Fermi energy,t ) K/(M - 1). Furthermore,q ) (M
- 1)/M and hencet′ ) K/M, whereK andM are integers. The
corresponding Fermi surface, with respect to a one-atom square
lattice, has lines running in the pure vertical or pure horizontal
direction with a distanceK/M between them.
We further see thatab* ) (1/M, -N/M) and bB* ) (0, 1).

The Kth multiple of ab* nests thet′-effective hole Fermi sur-
face. Choosing the alternate vertical basis set whereab′ ) (0,
M) and bB′ ) (1, N′) we find ab′* ) (-N′/M, 1/M) andKab′*
nests the other pair oft′-effective hole Fermi surfaces. QED.
It may be seen that there are clear analogies between the linear

chain and theσ-only square lattice. In particular, as long as
one of the defects by itself divides the square lattice into finite
segments one has produced linear fragments identical in
regularity to those found in one dimension. We now consider
several specific examples of defect square lattices.

La10Se19 and Cs3Te22

The structures of both La10Se198 and Cs3Te229 contain
defective square lattice sheets of chalcogen atoms. Their
structures are illustrated in Figures 5 and 6. In the former
system these square lattice sheets are separated by layers of
La(III) Se(-II) cubes, while in the latter system the square sheets
are separated by Cs(I) and Te8(0) rings. We assign these
oxidation states by assuming that the electropositive alkali metals
or rare earth atoms are in their highest oxidative state, and that
chalcogen atoms unbonded to other chalcogen atoms21 have
charge-II and that the Te8 unit which is isostructural with the
well-known S8 molecule is neutral in charge. The structures
of the defective square lattices in these systems are shown in
Figures 5 and 6. It may be seen that the number of defective
sites is 1 and 4 per unit cell for respectively La10Se19 and Cs3-
Te22 and that there are ten potential square lattice sites per unit
cell in these systems. The fraction of occupied sites,q, is

Table 1. Theoretically Calculated and Experimentally Estimated
Maximum Nesting Vectors,kBM

a*

compd σ model eH expta

LaSe2 0.50 0.54 0.50
K0.33Ba0.67AgTe2 0.33 0.35 0.33, 0.35
La10Se19 0.40, 0.20 0.36 0.40, 0.20
Cs3Te22 0.45 0.39 0.40, 0.20
Dy65.33Se120 0.33 0.29 0.33, 0.28
RbDy3Se8 0.50 0.49 0.50, 0.25

a In the case of the experimental defective lattice systemskBM is
taken to be 21/2 times the projection of the observed nesting vectors
along thea* + b* direction. For RbDy3Se8 the observed reciprocal
lattice vector is exactly1/2 of the theoretically predicted cell. Nesting
compatible with the Fermi surface is caused by 2kB vs kB itself.

Figure 5. The structure of La10Se19. Filled circles are La atoms, open
circles Se atoms.

kBM ) (2z, 0) 0e ze 1/4

kBM ) (1- 2z, 0) 1/4 e ze 1/2

kBM ) (1- 2t, 0) 1/2 e ze 3/4

kBM ) (2t, 0) 3/4 e ze 1 (5)
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respectively9/10 and6/10. Based on the oxidation assignments
given above we may now deduce the average charge on these
square lattice sites. In La10Se19we find that of the 19 Se atoms,
ten are isolated Se(-II) atoms which are not part of the defective
square lattice. Therefore the average charge on each of the
atoms in the defective square lattice is-10/9. Similarly in Cs3-
Te22, there are two neutral Te8 rings per unit cell. The average
charge on the remaining six Te atoms is-1/2. To deduce the
fractional band occupation,z, of the px and py band we assume
that for every chalcogen atom in the square lattice, four electrons
lie in valence s and pz orbitals. As there are maximally four px
and py e- per chalcogen atom we find that for La10Se19 z) 7/9
and for Cs3Te22 z) 5/8. Applying eq 6 we findt′ ) (1- 7/9)(9/
10) ) 1/5 ) 0.20 while for Cs3Te22 t′ ) (1 - 5/8)(6/10) ) 9/40 )
0.225. The effective band filling for these two systems is rather
similar in value. It can be noted that had there been just one
more e- per Cs3Te22 formula unit the effective band fillings in
the two systems would be equal to each other. By contrast,
the true fractional band fillings for these two systems differ by
the value 0.15. Theσ-model Fermi surface for the effective
band filling of t′ ) 0.20 was previously given in Figure 4b. In
Figure 7 we show the full eH method Fermi surfaces for these
two systems. It may be seen that just as in the earlier example
for K0.33Ba0.67AgTe2 there is a marked sinusoidal variation in
the Fermi surface. Just as in this earlier case we therefore find
the averagekBM. These values are given in Table 1. It may be
seen that there is reasonable agreement between the eH
calculatedkBM and the simpleσ-model result. The possible
consequences of this sinusoidal variation are considered in the
next section.
The structures of La10Se19 and Cs3Te22 differ from those

described in the previous section in that there are two indepen-

dent supercell lattice vectors in these systems. These indepen-
dent vectors are the two new reciprocal lattice vectors of the
supercell. They may be related to the reciprocal lattice vectors
of the original 2-atom square cell,2, by the formulas:

where the subscript n stands for the supercell and o for the
original subcell. The existence of two separate vectors can be
directly correlated to the two sets of parallel diagonal lines in
Figure 4b. In Figure 4b we have labeled two different nesting
vectors, kB1 and kB2. The vector kB1 couples the positively
sloped diagonal lines to each other whilekB2 couples the nega-
tively sloped diagonal lines to each other. In fact we have
chosenkB1 and kB2 to be thean* and bn* of eq 6. We therefore
find that the d-CDW pattern observed experimentally causes
nesting of the Fermi surface in agreement with experiment. In
the case of La10Se19 the agreement between theσ model and
the observed unit cell is in exact agreement. The eH method
is also in close agreement with the observed unit cell (see Table
1). In Table 1, in order to facilitate comparison of the theoretical
and experimental values we have taken the projection of the
experimentalk vectors along thekBM direction. The agreement
between theory and experiment for Cs3Te22 however is not as
good. We can account for this difference by actually examining
the electronic density of states of the defect square-lattice pattern
of Cs3Te22. An extended Hu¨ckel calculation on this system
shows that at the observed electron count of Cs3Te22, the
defective lattice is metallic. However, had we placed just one
additional electron into the Te63- square-lattice net, a band gap
of 2 eV would appear at the Fermi surface. Thus the equations
used for defective CDW’s in this paper correctly rationalize what
the band filling must be to produce the semiconducting state,
as is required by perfect HOMO-LUMO mixing and nesting
vector arguments. As HOMO-LUMOmixing generally renders
the system more stable, we expect that it should be possible to
prepare a perfectly nested defective lattice of the type found
for Cs3Te22 for the effective fractional hole band filling oft′ )
0.20.
It may be seen that while the above results may be used to

rationalize the observed superstructure unit cells, they are not
precise enough to be of predictive value. For example, though
the results are highly restrictive, there are still an infinite number
of permissablekB-vectors which couple the Fermi surface to
itself. However, the majority of these choices ofkB-vectors
would lead to direct lattice unit cells of gargantuan proportions.
In this, we make a distinction between such hypothetical large
unit cells and the incommensurate CDW’s found in numerous
nondefective systems.2 In the latter systems, the Fermi surface
nesting actually drives the incommensurate CDW. Here the
Fermi surface is by itself compatible with a finite sized unit
cell. We assume that unless there is a clear driving force, the
small direct lattice unit cells will be those most frequently found.
In the above cases of Cs3Te22 and La10Se19, the observed unit
cell is one of the two smallest unit cells compatible with
complete nesting of the Fermi surface. The other smallest
solution is the one in whichkB1 ) (1/5, 0) and kB2 ) (0, 1).
Taking an idea from Pauling’s fifth rule22 for crystal structures,
we call such small cells parsimonious.

Dy65.33Se120 and RbDy3Se8

The crystal structures of both Dy65.33Se120and RbDy3Se8 are
only partially known.10,11 In the case of Dy65.33Se120, the

(22) Pauling, L.The Nature of the Chemical Bond, 3rd ed.; Cornell
University Press: Ithaca, NY, 1960.

Figure 6. The defective square lattice of Cs3Te22.

Figure 7. The eH Fermi surface for the defective square lattices of
(a) La10Se19 and (b) Cs3Te22. For comparison, theσ-only model Fermi
surface is drawn in as a dotted line. It may be seen that the eH surface
forms a sinusoidal wave around the averageσ-model diagonal lines.

an* ) 2/5ao* - 1/5bo*

bn* ) 1/5ao* + 2/5bo* (6)
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structure has been resolved through single-crystal X-ray dif-
fraction to be one of four possible models. The defective
square-net of one of these model solutions is shown in Figure
8. In this model, as in the other three, the unit cell contains 66
Se(-II) atoms outside the defective square-lattice sheets and
54 Se atoms in the defective square sheets. Thus there are
twelve defective sites on the square lattice. The number of Dy
atoms is determined by counting the number of dimers (Se2

2-),
trimers (Se34-), and other local clusters which exist in the
defective square lattice and by assuming charge neutrality. The
total fraction of filled Se px and py orbitals in this system isz)
43/54, while the fraction of occupied sites is9/11. We therefore
find t′ ) (1 - 43/54)(9/11) ) 1/6.
In a similar manner, we consider the RbDy3Se8 structure. The

unit cell of the defective lattice superstructure is shown in Figure
9. For this system only the substructure and the cell dimensions
of the superstructure are known.10 Of the eight Se atoms per
formula unit, three are isolated Se(-II) atoms which lie between
the defective square lattices while the remaining five belong to
the defective square lattice itself. From these factors we find a
fractional band filling ofz ) 7/10, with q ) 5/6 and t′ ) (1 -
7/10)(5/6) ) 1/4.
We now seek to find for these two systems the superstructure

unit cells compatible with these values fort′ andq. We shall
make the assumption that no square-lattice site in the true
superstructure is partially unoccupied. For example, in the
Dy65.3Se120 structure,2/11 of the sites are missing, therefore the
actual superstructure of the square-lattice cell must be a multiple
of 11. We then proceed to find the smallest supercell compatible
with the requirement of nesting both sets of parallel diagonal
lines of their Fermi surface. The smallest such cell isk1 )
(1/3, 0) while k2 ) (0, 1/11). The first vector is the maximal
nesting vector fort′ ) 1/6 while the latter is required by the
requirement of complete site occupancy. The final supercell is
therefore 3a × 11b, a 33-fold increase over the original two-
atom unit cell.
It may be seen that the above division ofk1 and k2 is

somewhat arbitraryswith one vector responsible for nesting
while the other vector accounts for the full occupancy require-
ment. It is also possible to produce this same 3a × 11b unit
cell in which one chooses two vectors which are each metrically

close to the requirement of nesting but have been slightly shifted
so as to lead to full site occupancies. One such pair of vectors
is kB1 ) (1/3, 3/11) and kB2 ) (1/3, -3/11). As we show in Figure
4a each of these vectors is close in value to allow nesting. Had
the vectors the values of (1/3, 1/3) and (1/3, -1/3), each separately
would have led to perfect nesting.
In the case of RbDy3Se8, the smallest unit cell compatible

with the requirements of integral site occupancy and full
coupling of the Fermi surface iskB1 ) (1/2, 0) while kB2 )
(0, 1/3). Weissenberg photographs of this latter system indicate
kB1 ) (1/4, 0) and kB2 ) (0, 1/3). Thus the putative observed
structure is twice in size to the cell predicted by the current
parsimonious model. It should be noted that a rather complete
evaluation of theµ2-Hückel energy surface of the RbDy3Se8
structure has shown that the lowest energy Hu¨ckel structure has
kB1 ) (1/2, 0) andkB2 ) (0, 1/3). Thus the error in the d-CDW
unit cell may not be due to a failure of this principle but may
be due to an error in the energy surface of the Hu¨ckel method
itself. In any case, the observed unit cell in RbDy3Se8 perfectly
nests the calculated Fermi surface, as the new reciprocal lattice
vector 2kB1 equalskBM.
In Figures 10a and 11 we show the Fermi surfaces for the

full eH model. It may be seen that in these systems, the
sinusoidal variation is particularly great for the Dy65.33Se120
system and much less marked for RbDy3Se8. This sinusoidal
variation is due to a combination ofπ-bonding and second
nearest neighbor interactions. In the case of Dy65.33Se120 the
variation is great enough to imply a breakdown of the pure
σ-only model. We show in Figure 10b the sinusoidal Fermi
surface in such a way so as to emphasize its nestable nature.
The key difficulty in deriving the shape of the Fermi surface
exactly is that nearΓ there are many states just below the Fermi
energy. Mixing of such states will lead to a significant energy

Figure 8. One model of the defective square lattice of Dy65.33Se120.

Figure 9. The experimentally determined features of the RbDy3Se8
defect square-lattice structure. Shown is one superstructure unit cell.
Filled circles represent fully occupied sites. Dotted circles represent
partially occupied sites, 4 of the 12 such sites are vacant.

Figure 10. (a) The eH Fermi surface for the defective Se square lattice
of Dy65.33Se120. Part of theσ-model Fermi surface is drawn as a dotted
line for comparison. (b) The sinusoidal curve fitting to the eH Fermi
surfacessolid arrows show theoretical nesting vectors alonga* + b*,
while dashed arrows show the experimentally observed wavevectors.

Figure 11. The eH Fermi surface for the defective Se square lattice
of RbDy3Se8. The σ-model Fermi surface is drawn as a dotted line
for comparison.
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lowering analogous to a second-order Jahn-Teller effect. The
sinusoidal curve shown in Figure 10b is a reasonable low
curvature approximation for the region nearΓ. The maximal
nesting vectors for this surface are also shown. Unlike in the
case of the previousσ-only model it may be seen that two
vectors are required in order to achieve full nesting. One such
vector lies along thex + y direction while the other lies in the
x- y direction. It is of interest that these two theoretical vectors
are quite close to the actual nesting vectors found in the Dy65.33-
Se120 system (previously shown in Figure 4a). To aid in this
comparison we show the experimentally observed superlattice
vectors in a dotted line format. As we noted earlier, the
experimentally observed superlattice vectors differ from the
theoretically calculated ones in that they correspond to a lattice
with integral site occupancies on all square-lattice sites. Finally
in Table 1 we compare the experimental and theoretical values
for the supercell vectors. Variation between theσ model and
the eH model are on the order of 0.03 reciprocal lattice units.

Site Occupancy Waves

In our discussion of the one-dimensional d-CDW’s, we
showed that the lattice defects adopted a wave-like pattern in
which the amplitude of the nesting vector could be related to
the positions of defects in the lattice. Defects tended to occur
at crests of the nesting vector waves and filled occupied sites
at troughs; such patterns are site occupancy waves (SOW’s).
This correspondence could be maintained in two-dimensional
systems as well. We therefore consider the defect patterns in
the three chalcogenide square-lattice structures with well-
characterized defect occupation factors: La10Se19, Cs3Te22, and
Dy65.33Se120. In the first two systems there are two nesting
vectors,kB1 and kB2. The resultant overall amplitude,A( rb), has
the form:

where there are now two arbitrary phase factors,θ1 andθ2. The
phase difference betweenθ1 and θ2 is variable, and as a
consequence the functionA( rb) can have considerable varia-
tion. The values ofθ1 and θ2 which accord best with the
observed crystal structures areθ1 ) θ2 ) 0 for La10Se19 andθ1
) 0 andθ2 ) π for Cs3Te22. In Figure 12 we plot these waves
graphically, where we use solid lines to represent wave crests
and dotted lines to represent the wave troughs. There is
agreement between the assumed positions of these waves and
the actual structure. In the case of La10Se19, this may be
attributed to the assumption that the two waves are in phase at
a lattice site position, while in Cs3Te22 the point the waves are

assumed in phase is out the center of a square of the overall
square lattice. It is clear that the indeterminacy of phase angles
θ1 and θ2 allows one much too great a latitude in the
construction of the theoretical SOW for eq 7 to be of significant
practical use.
We turn to Dy65.33Se120. In Figure 13 we show the corre-

sponding wave patternkB1 ) (-1/3, 3/11) and kB2 ) (1/3, 3/11). It
may be seen that the unoccupied lattice sites correspond to the
intersection of the crests of the two separate SOW’s. Just as in
the La10Se19 system, the intersection of the troughs of the two
waves tends to correspond to isolated Se2- atoms. Finally it
should be noted that in the original crystallographic work for
Dy65.33Se120 there were four possible models for the crystal
structure. While each crystal model differs in their fine details,
all have the same pattern SOW as described above.

Conclusion

In this paper we have shown that by changing the band filling
from the actual electron band filling to an effective band-filling
we are directly able to apply the Fermi surface of the
unperturbed substructure to the defective lattice CDW problem.
We have considered four square-lattice systems with such
d-CDW’s La10Se19, RbDy3Se8, Cs3Te22, and Dy65.3Se120. The
methods used are a direct generalization of the pure CDW
methods which are used to understand the nondefective lattice
of LaSe2 and K0.33Ba0.67AgTe2. We have further applied a
variant of the principle of parsimony and have assumed that
the smallest unit cell compatible with the requirement of nesting
of the Fermi surface and integral occupancy of lattice sites is
the most commonly found superstructure. In the case of La10-
Se19 and Dy65.3Se120 there is an exact agreement between this
unit cell and that which is found experimentally. For Cs3Te22,
the observed structure is in error by one electron to the one
predicted by theory. Finally in the case of RbDy3Se8, the actual
superstructure unit cell is double that of the most parsimonious
cell. However this larger unit cell does still allow proper nesting
of the Fermi surface.
One unfortunate difference between the defect CDW lattice

model described in this paper and the ordinary CDW model is
that q, the partial site occupancy, is directly a factor in
determining both the Fermi surface nesting vector and the size
of the direct lattice unit cell, allowing the possibility of a hidden
tautology. It should be noted however that the length and
direction of the Fermi nesting vector isq multiplied by the
fractional band filling. This fractional band filling is quite
independent of the numberq. In particular we note that this
fractional band filling is affected strongly by the fairly random
mix of constituent atoms sandwiched between the defective
square layers. Therefore the length ofkBM is not sufficiently
determined byq alone. A good example of this was found in

Figure 12. The defect structures of (a) La10Se19 and (b) Cs3Te22 viewed
as SOW’s. Thick lines indicate wave crests, while dotted lines wave
troughs. Filled circles represent occupied sites, while dotted circles
represent vacant sites.

A( rb) ) cos(2πkB1‚ rb + θ1) + cos(2pkB2‚ rb + θ2) (7)

Figure 13. Dy65.33Se120 structure viewed as an SOW. See caption of
Figure 12 for figure conventions.
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the Cs3Te22where the calculated Fermi surface and the observed
superstructure were in slight disagreement. As noted above,
this error is due to the fact that a true gap between occupied
and unoccupied bands is found only on the addition of one extra
electron per formula unit. The effective band filling method
therefore correctly predicts the electron count required for the
semiconducting state. We finally note that the effective hole
fillings found in the four known systems are1/4, 1/5, ∼1/5, and
1/6. These values are much simpler fractions than those of the
true band fillings in these same systems and seem almost a
logical continuation of the hole fillings of1/2 and1/3 found in
the nondefective systems LaSe2 and K0.33Ba0.67AgTe2. The
simplicity of these numbers does not seem entirely fortuitous.
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