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Abstract: In this paper we consider charge density waves in defective lattice structures. Just as in nondefective
lattices, we find that the Fermi surface plays an important role in supercell dimensions. In particular, a correspondence
is found between the Fermi surfaces of the defective and the nondefective lattices. The concept of an effective band
filling is introduced, which may be understood as the band filling for which the fully occupied lattice mimics the
Fermi surface of the partially occupied lattice. To demonstrate the efficacy of this method, the superstructures of
LajoSeaq, CsTer,, RbDysSe, and Dyss ss5e 20 are studied. Fermi surfaces from botfidikal and extended Hikel
tight-binding theories allow the rationalization of the defect lattice structures found in these systems. Finally a
simple model based only on nearest neighbor interaction is found to preserve most of the essential features of the

Hickel and extended Hikel treatments.

Introduction

Effect of Site Defects on Band Structure

In the last few years, tight-binding methods have been applied ~ Both the extended I"'tll_'“?'“z’le’(GH) and Hiekel methods have
with remarkable efficacy to the rationalization and prediction ©€en applied to CDW's in systems without site defects. In these
of both commensurate and incommensurate charge densitycalculatlons one considers a tight-binding Hamiltonian for which

waves (CDW's)-2 These CDW’s modulate the sublattice atom
positions away from their ideal sublattice sifes.The tight-

binding studies used to account for such CDW's are in general
based on a calculation of the sublattice Fermi surface, followed

by the determination of those reciprocal space&-woectors®

the off-diagonal form is given by the Wolfsbergdelmholz
approximation*

Hij = gaj(Hii + Hjj) (1)

which allow maximum interaction between opposing states on \yhere i and j are atomic orbital indicesH; and H; are

the Fermi surface.
While authors have applied this method of nedtedctors

to the problem of CDW's, there has been little treatment of the

parallel problem of defective lattice CDW's (d-CDW'S) A

predetermined Coulombic integralS; is the overlap integral
between andj, andK is a constant generally set at the value
1.75. In the case of Hikel theory one solves the equatidy

= Ey while for the eH method one solvésy = ESp. One

d-CDW is one in which crystalline superstructures are produced generally considers all interatomic interactions between atoms
by an ordered pattern of vacancies over the original sublattice less than 10 A apart.

in addition to any coexisting CDW'’s. In this paper we show

For systems with translational symmetry, the solutions of the

how the method of nesting vectors can be applied to the defectHuickel or eH equations are Bloch functions of the form

lattice CDW problem. We apply this method to both the one-
dimensional chain and the two-dimensional square lattice.
These latter results are directly applied to the square lattice

d-CDW'’s found in LagSea e, CsTern,® RbDy:Se, 0 and Dys 3z
Seett
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w(R)0= 3 @™ elg(T)0 @)

where¢(T;) is an atomic orbital located at the positi@n in
real space, and is the crystal momentum vector. The vector
k is in the same units as those used by crystallographers when
describing reciprocal spade.

The use of suctk-vectors allows one to reduce the infinite
dimensional crystalline problem to one of dimensinwhere
N represents the number of atomic orbitals located inside the
crystallographic unit cell. For example, in the case of a zigzag
chain of s orbitals],

P
1 unit cell

there are two orbitals per unit cell and the corresponding
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-1 0 1 for z= ?/3 andq = %;. Defect sites represented by dotted circles are

Figure 1. Energy of an infinite chain of porbitals as a function of ~ Placed at sites with maximal wave amplitude.

reciprocal space index. Thick portions of the sinusoidal curves . .
represent filled bonding orbitals. has opened up at the Fermi surface. There is a second parallel

solution for the choice of the nesting vect&t, Often in one
a W dimension, thek vector which is shortest corresponds most
naturally to the lowest energy distortion. For the case of
1/5, the ko vector isl/3, while ky = 3. Above the half-filled
b = o e @ = e e e :: band, howevelk; is shorter thark,. One useful way of viewing
Figure 2. (a) CDW for the one-dimensional chain whete= Y. the change fronk; to k; as the key branch of the Fermi surface
Arrows indicate shifts in atomic positions going from the 1-atom subcell iS to recall that in alternate systems like the 1-D (or square
to the 3-atom supercell. (b) d-CDW whege=3/,. Note the equivalent lattice), for each and every bonding orbital with net bonding
formation of trimers in parts a and b. energyE, there is an antibonding orbital with an equal and
opposite antibonding energy;E. One consequence of this

Hamiltonian is symmetry is that a system with electrons has exactly the same

2k Fermi surface shape as one wiliholes. Let us defineas the
H(_R) —[* ) B+ ) (3) fraction of holes in the system with= 1 — z We find for
a+ e’z"") a example the system for whith= %/s has the same Fermi surface

as the system whee= 2/s. Forz < /5, it is most convenient
to view the CDW'’s or d-CDW's in the electron picture while
for z = 1/, the hole picture is more convenient.
1-D d-CDW We now consider as a first example of a d-CDW a defect
lattice of this same linear chain in which every fourth atom has

Our discussion of d-CDW systems will be facilitated by first peen removed. This pattern is illustrated in Figure 2b. As can
reviewing the nondefective CDW model. Here we consider an pe seen in the figure, this defect pattern leads to the formation
infinite linear chain of p orbitals running in thex direction. of relatively isolated trimers and hence will cause band gaps at
Consider the one atom primitive unit cell and nearest neighbor fgctional band fillings of/; and?s. The overall effect of this
interactions only. The band structure of this system is shown gefect pattern is to create the band gaps at the same band fillings
in Figure 1. In Figure 1, we also include a band fillig0 < as those found in the nondefect (displacive) CDW shown in
z =< 1), wherez= 0 and 1 denote respectively the empty and Figure 2a.
fully occupied bands. Filled orbitals are represented by the thick  Thjs example leads to a natural question of whether it is
line portion of the sinusoidal curve, while empty crystal orbitals possible in general to find a connection between the well-
are represented by thin lines. The intersection between thesq nderstood displacive CDW's and the less well-characterized
vectors connect points on the Fermi surface. In Figure 1 they petween the two types of CDW's exist. We consider first the
are shown ag; andk.. It may be seen thdt + k; = 1 and linear chain of porbitals and as the chemical systems studied
thatk, corresponds ta, the fractional band filling. in this paper are electron rich, we consider systems where

In order for the HOMO and LUMO (highest occupied and 1/, or equivalentlyt < 5.
lowest unoccupied orbitals) to mix, a lowering of symmetry  Theorem: Consider a defective linear chain of prbitals
must occur which causes eithéf or k; to become a new  yynning in thex-direction with nearest neighbor interactions only
reciprocal crystal lattice vector. For example, in the case where gng with lattice sites placed at unit distances apart. Let the
z = 5 thenky = 5. As the original reciprocal lattice  fractional site occupation (i.e., the fraction of all lattice sites
corresponds to integer values along kexis shown in Figure  \yhich are filled) beg and the fractional hole filling bewhere
1, the newk; vector therefore causes a tripling of the number t < 1/, Consider the CDW for the nondefective lattice, cos
of permissible diffraction reflections and thus a tripling of the (27K ir + 6) wherek'; = t' = qt. Place defect sites at the
unit cell Iength Th|§(2 vector is the CryStal momentum vector maximal values of this function' Choosimin such a way so
of a wave of the form cos (@er + 6) wherer represents the  that this assignment is unambiguous. Then the resulting defect
coordinates with the unit length afds an arbitrary phase angle.  structure has a band gap at the hole filling ¢t e., at a band-
It is instructive to look at the amplitude of this wave at true fijling of z= 1 — 1).
atomic sites. For illustrative purposes we chodse n/2. As Before proving this theorem, we give an illustrative example
is shown in Figure 2a, one of three atom sites in the new unit of jts use. As an example, consider the cgse %3 andz =
cell lies at a node while the remaining two atoms lie in zones 2/;. Asz > 1/,, we use the hole formalism. We firtd= 1 —
of alternately positive and negative wave amplitudes. If we 2/, = 1/, and thatt’ = (Y3)(%s) = %s. In Figure 3 we plot the
now consider these values as shifts in the position of the atomsfnction cos(2r(%s) + 7/2). We further place the actual defects
along thex direction,Ax (positive amplitudes= +Ax; negative  at those values where this wave has its greatest amplitude. As
amplitudes= —AX), then as is shown in Figure 2a, this wave there are three defects per nine sites, we choose the three sites
corresponds to the formation of somewhat isolated trimers alongwith greatest wave amplitude. Figure 3 shows the resultant
the chain. As there are three orbitals per trimer and the bandstructure consists of two trimers separated by alternately one
filling was assumed to bé&s;, there is therefore a gap which  and two neighboring defect sites. &s= 3, the four resulting

(15) Stout, G. H.; Jensen, L. H{-ray Structure Determination A bonding or nonbonding orbitals are filled while the remaining
Practical Guide 2nd ed.; John Wiley & Sons: New York, 1989. two antibonding orbitals remain empty. There is therefore a

wherea and g are the standard 'Huel o and S terms, and
where we have chosen one unit cell to be of length 1.
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band gap at the Fermi energy. Similar patterns are found for hole filling, t, for the defect lattice can be brought into
other choices of the phase angle, We now prove the general  correspondence with the CDW of the effective hole fillitig,
result. of the nondefect lattice. We may similarly define an effective

Proof: Let the fractional site occupanay= N/M and the ~ band filling, Z, wherez =1 — t'. One may also prove the
fractional hole band filling = K/L whereN andM as well as  following converse result.
K andL are relatively prime integers. By assumptibrs NK/ Theorem: Consider the same system gfgrbitals as in the
ML. We may therefore consider a unit cell of lengf.. In preceding case, with fractional site and hole occupancies of
this unit cell the wave cos{@'r + 6) hasNK maxima. Assume respectivelyg andt. Assume that there is a defect lattice with
for now there are enough defects to place one near everya band gap at the Fermi energy. The unit cell of this defect
maximum. Therefore each unit cell has been divided hiko lattice is a multiple of the wavelength of the CDW for the
fragments of near equal length. There are a totat®lL atoms nondefect lattice with hole filling' = g-t.
in the unit cell. Asq= N/M, the total number of atoms equals Proof: Assume that the length of the primitive unit cellNt
NL. The average length of each segment is the total numberand thatN sites in the primitive cell are occupied. Therefore
of atoms divided by the total number of fragments. The average = N/M. By our assumption of a band gapnust be a rational
length of each segment BL/NK = L/K. Now letL = jK + i fraction of N. We therefore can find an integral valesuch
wherei < K. We therefore can hawdi segments of length thatt = K/N. Thereforet’ = (N/M)(K/N) = K/M. A CDW for
+ 1 andN(K — i) segments of length This is the mostequal  a hole filling of t' has a wavelength dfi/K. Recall the unit
partitioning of the segments and hence compatible with the cell is of lengthM. QED.
maxima in the plane wave CDW. Now we need to prove there  These two results together show that there is a close

is a band gap between the uppermigst of these orbitals and  connection between one-dimensional defect lattices and the
the other orbitals as the total number of orbitaldis(and as  cpw of a nondefect lattice with an effective hole-fillirig In
t=K/L = NK/NL). Recall that the molecular orbital energies particular the effective hole-filling CDW may be used to produce
of a segment of lengthare 2 cos@m/(j + 1)), wheremis an a defect pattern with a requisite band gap. Furthermore, this
integer running from 1 t9. Therefore between each energy  cpw pased solution is one of the simplest such defect patterns,

level in the segment of lengff+ 1 there is one and only one 55 g other patterns have unit cells which are integral multiples
energy level of the segment of length In particular, theNK of this solution.

most antibonding orbitals of thdi segments of length + 1
andN(K — i) segments of lengthcorrespond to the single most
antibonding orbitals of each and every segment. These most
antibonding orbitals are seperated in energy from all the other

orbitals and hence there is a band gap at hole fillirgk/L as of the defect lattices are now occupied with fictitious atoms

we wished to demonstra_te. ) with a complete valence shell of electrons. Thus in the previous
The above proof requires that there is a defect near every example wherg = 2/; andz = 25, we have replaced the missing

maximum of the CDW in theML-unit cell. However the 1/, |attice sites with atoms for which= 1. The new effective

number of defects may be smaller than this number so that therepgng filling is Z = (¥3)(%s) + (Y3)1 = 7/s and the effective

are maxima for which there are no corresponding defects. In hoje filling is 2. This is the same value as given above in the

such cases it is convenient to introduce a new fictitious defect yrevious discussion of Figure 3.

lattice where a number of defective sit&, are placed at the

maxima for which hitherto there were no corresponding defects.

The length of the fictitious unit cell is noM'L whereM' = M

+ DJ/L. The fictitious cell fractional site occupation /M’

and the fictitious cell fractional hole filling i&/L. The total

number of atoms in the fictitious cell NL (NL = (N/M")M'L)

and the average length of each segmentLi&. By the

It is instructive to consider the implications of an effective
hole filling versus a true hole filling. There is an alternate way
of viewing the effective hole filling. Fot < 1/, the effective
hole filling also corresponds to the case where all vacant sites

Generalizing this result, the effective hole method outlined
above corresponds to the following self-consistent strategy to
find defect-distortion patterns. We note the band gaps between
occupied and unoccupied levels in this paper are generally
betweeno nonbonding molecular orbitals amd antibonding
orbitals. We thus seek to find defect-distortion patterns that
; . . e open a band gap between such classes of orbitals, i.e., we seek
arguments outlined in the preceding paragraph, the fictitious to avoid orbitals that have a combinationafhonbonding and
cell has a band gap at= KIL. o* antibonding character. Therefore, as done above, we place

We now need to demonstrate that in going from the fictitious at each defective site in the lattice an atom, with all its valence
cell to the true one (which does not contain any of e grpjtals filled, which by a displacive distortion has no bonds
fictitious lattice sites) that this band gaptat K/L is preserved.  jith its neighbors. One then calculates at this new electron
The difference between the fictitious SyStem and the true Systemcount the Fermi surface of the Corresponding nond|st0rted’
is that in the fictitious SyStem there are Segments of either Iength nondefect System_ From such a Fermi surface we dedlk@e a
j or lengthj + 1 which have combined to form segments of ok, vector which nests this Fermi surface to itself. We can in
roughly doubled size with lengthg,2j + 1, or 3 + 2. Inthe principal find the lowest energy distortion patterns corresponding
fictitious system only the top most antibonding orbital of each o these vectors. These distortion patterns in general lead to a
Segment is unfilled. Therefore we need Only show that the two band gap between occupied and unoccupied levels. If such a
highest orbitals of the doubled segment lie above the secondstrycture has isolated atoms, i.e., atoms which have no bonds
highest energy orbital of the halved segments and that the thirdassociated to them, then the removal of such atoms from the
highest energy orbital of the doubled segment lies beneath thestrycture maintains the overall band gap. This is so as such
highest energy orbital of the halved segment. This is readily jsolated atoms are purely nonbonding and therefore a priori their
done as we recall that for a segment of lengtits molecular  orhitals lie among the occupied bands. If the number of such
orbital energies are2cos(zm/(j + 1)) wheremis an integer  jsplated atoms is equal or greater to the original number of
running from 1 toj. We can in the same way consider tripled  defects in the system, we can in this way generate a defect lattice
and other higher line segment lengths. QED. pattern with a band gap at the required electron count and with

The above theorem introduces the quarttity qt. We may the required defect concentration. This method may be seen
definet’ as the effective hole filling. The band gaps of the true to be self-consistent as it requires the addition of fictitious atoms,
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Figure 4. Fermi surface of @-model 2-D square lattice far= %3 (a) and¥s (b). The Fermi surface is plotted as a function of reciprocal space.
In part a the reciprocal lattice indices are giverl'at The Fermi surface is along all diagonal lines in the figure. In (c) we show the eH Fermi
surface for k3BaosAgTe, wherez has the nominal valu&s.

o
X

followed by their removal, in order to find a distorted defective ~ We illustrate the shape of temodel Fermi surface far=
lattice which is overall insulating in nature. This is the overall 2/3 and¥s in Figure 4. The Fermi surface lies on the diagonal
approach taken in this paper. Finally it should be noted that lines shown in this figure. The points X and M on this figure
the use of isolated atoms as fictitious units may prove important correspond respectively to tHevectors: /2, 0) and'/z, /).

as the systems studied in this paper are electron rich. Therefordntegral values of thé-vector correspond to the poifit To

the few unoccupied orbitals in this system have a large numbercompare these vectors with those found in diffraction experi-
of occupied orbitals with which to interact and the removal of ments, we note the two-atom square lattice allows diffraction
one or two of these does not completely change the overall to occur atl" vectors only, i.e.,lf, k), whereh andk must be

bonding picture. integers and in addition whele+ k equals an even number.
) , This latter condition is due to the fact thais a centered cell.
Square Lattice d-CDW's In Figure 4a we note the location of folirvectors, (0, 0), (1,

We consider a planar square lattice of main group at6ms. 0). (0, 1), and (1, 1). We also show in Figure 4c the extended
In this example we consider only the p orbitals on each atom. Hiickel Fermi surface for {sBa0.s/AgTe; which was calculated
We further consider only first neighbor interactions and anly ~ using valence s and p orbitals fitted to sindleSlater type
bonds. We therefore consider only nearest neighpepp py— orbitals, with interactions between atoms up to those 10 A apart
p,, and p—p, overlaps, all of which are equal and may be set considered. KsBaosAgTe; has tellurium square nétsin
equal to the same overlap value. In this paper we shall call which the band filling of the pand g orbitals isz = 2.
this approximation ther model. We consider the two-atom Therefore the results in Figure 4c may be directly compared

square-lattice unit cell? with the idealized Fermi surface shown in Figure 4a. It may
be seen that there is similarity between these Fermi surfaces.
y In the case of the full eH treatment, however, the Fermi surface
. 2 deviates in a sinusoidal way from the straight line found by the
X o model. This has an important conseguence. In parts a and
z c of Figure 4 we indicate the vectork,,, which are the

L . ) maximal nesting vectors. For the simpfemodel, as all the
In theo model the porbital is a nonbonding orbital and can  permj syrfaces lie on diagonal line, the veciq; connects

be ignored as it is well below the energy of the Fermi level. o ary point in the Fermi surface to a corresponding point on

There are therefore just tWO ac’glve orb|tal§ per atom, and yhe Fermi surface. This vector therefore corresponds to the

there are a total of four atomic orbitals per unit cell. Forevery yiciortion which allows maximal HOMO-LUMO coupling. By

k-vector there are therefore four crystal orbitals. The energies contrast, nesting vectors in the eH model depend explicitly on

of these four orbitals are: the observed sinusoidal variations. We therefore take the
average of the nesting vectors to find the maximal nesting vector.

E, = 28 cosfr(k, + k)] We find this average nesting vector is (0.35, 0). There is
therefore a shift of 0.02 ifk,,-vector length in going from the
E, = 2 cosfr(k, — k)] o model to the full eH picture. In Table 1 we compare these
results with those found experimentally. It can be seen that
E;=-E, the average error of this method is 0.03 reciprocal lattice units.
The agreement between theory and experiment for botly the
E,=-E (4) model and the full eH picture are roughly of equal quality.

From the energy expressions given in egs 4 it is possible
wherep is the strength of the bond between neighboring p ~ Within the o model to derive a simple expression fiy, as a
orbitals and where th&-vector has two indiceg andk, as it function ofz or t:
corresponds to a two-dimensional vector.

(18) Li, J.; Zhang, X.; Foran, B.; Lee, S.; Guo, H.; Hogan, T.; Kannewurf,
(16) A discussion of the square net is given in: Tremel, W.; Hoffmann, C. R.; Kanatzidis, M. GJ. Am Chem Soc Submitted for publication.
R.J. Am Chem Soc 1987, 109, 124. (19) Benazeth, S.; CafreD.; Laruelle, P Acta Crystallogr 1982 B38
(17) It proves most convenient to consider the two atom square lattice, 33.
as in many cases, the actual crystalline superstructure of defective square (20) Marcon, J.; Pascard, R. R. Acad Sci Paris 1968 266, 270.
lattices are not known. Previously published experimental results are  (21) In the case of LaSes, the chalcogen atoms found between the
presented in terms of the known substructure which is generally found to defective square lattice layers are found to be 3.68 A distant from the other
be the two atom per unit cell square latti, Se atoms.
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Table 1. Theoretically Calculated and Experimentally Estimated
Maximum Nesting Vectorsk,

a*
compd o model eH expt

LaSe 0.50 0.54 0.50

KosBaosAdTe, 0.33 0.35 0.33,0.35

La;oSeq 0.40, 0.20 0.36 0.40, 0.20

CsTex 0.45 0.39 0.40, 0.20

Dyes 33556120 0.33 0.29 0.33,0.28

RbDysSe 0.50 0.49 0.50, 0.25

2In the case of the experimental defective lattice syst&hwsis
taken to be ¥? times the projection of the observed nesting vectors
along thea* + b* direction. For RbDySe; the observed reciprocal
lattice vector is exactly/, of the theoretically predicted cell. Nesting

compatible with the Fermi surface is caused by K itself.

ky=(220) 0=<z=<?, _ o
Figure 5. The structure of LaSesq. Filled circles are La atoms, open

- circles Se atoms.

ky=00-220) Y,<z=<,

the row directly adjacent to this first row. Choose the defect

ky=@1-2,0 Y,<z<73, atom which is closest to the defect site at the origin. This third
defect site can be set to lie &t,(1). We thus construct a unit
EM = (2t, 0) 3/4 <z7<1 (5) cell with basis vectorg = (M, 0) andb = (N, 1). This cell is
primitive as by construction no additional defect atom can lie
|In particular, the direction OEM is in the purea* direction (or on the borders or interior of the cell. The defect structure

by symmetry in the pureb* direction) and its length is  therefore consists of linear fragments all of length— 1 all
proportional to the number of electrons for< /5, or to the running in the horizontal direction, and the area of the defect

number of holes foz > . primitive cell is M. Furthermore, we may follow the same
Another case of particular interest is the example wizere construction in the columnar direction. As the areas of primitive
3, i.e., the pand g bands aré/, filled. For this valuek,, = unit cells are equal we conclude that the defect structure also
(4, 0) and one would expect a real space superstructure twoCONSists of linear fragments all of lengih — 1 all running in
times the size of the original square lattice in teirection. the vertical direction. We see therefore that as there is a band

This corresponds with known observed superstructures. In9ap at the Fermi energy= K/(M — 1). Furthermoreq = (M
LaSe and CeSgthe square lattice atoms have a net charge of ~ 1)/M and hence’ = K/M, whereK andM are integers. The
—1 each. If one completely fills both the low-energy 4s and Corresponding Fermi surface, with respect to a one-atom square
the nearly nonbonding,rbital, the p and g band i, filled. lattice, has lines running in the pure vertical or pure horizontal
It is well-established that the square lattice in these systemsdirection with a d'Staan/M between them. -
(which contains no site defects) has a doubled square lattice_ We further see thai* = (1/M, =N/M) and b* = (0, 1).
superstructuré®?® Therefore as shown in Table 1 the agreement 1N€ Kth multiple of 8* nests thet'-effective hole Fermi sur-
between they model and experiment is in this case exactly face. Choosing the alternate vertical basis set wiaere (0,
correct. M) and b’ = (1, N') we find a'* = (—N'/M, 1/M) and K&'*
These results for nondefect CDW's may be directly carried Nests the other pair df-effective hole Fermi surfaces. QED.
over to the case of defect CDW's. To do so we apply the It may be seen that there are clear analogies between the linear
effective band-filling or hole-filling formalism. For example, ~¢hain and thes-only square lattice. In particular, as long as
considerz = Y, andq = %s. Asz= Y, we may apply either ~ On€ of the defects by itself divides the square lattice into finite
picture. For the former view we take= zqwhile in the latter segments one has produced linear fragments identical in
one we set’ = tg. In either case we find the sanﬁ;ﬂ equal regularity to those found in one dimension. We now consider
to (Y, 0). several specific examples of defect square lattices.
One can also find direct connections between the band gapsLa +Sae and CsTe
of the defect square lattice and those for the nondefective lattice ~310°92 i€

with effective hole filling,t'. The structures of both LgSeds and CsTey,® contain
Theorem: Consider a defective square lattice in #yglane defective square lattice sheets of chalcogen atoms. Their
with lattice sites placed unit distances apart. d et fractional structures are illustrated in Figures 5 and 6. In the former

site occupation and = fractional hole filling. Assume that system these square lattice sheets are separated by layers of
there are apand p orbital at every site and that there are only La(lll) Se(—II) cubes, while in the latter system the square sheets
nearest neighboo interactions in the system. Assume both are separated by Cs(lI) and g{® rings. We assign these
that there is a band gap at the Fermi energy and that there isoxidation states by assuming that the electropositive alkali metals
only one defective site per primitive unit cell. Multiples of the or rare earth atoms are in their highest oxidative state, and that
defect structure’'s reciprocal lattice nest the CDW of the chalcogen atoms unbonded to other chalcogen &fohmve
nondefect lattice with effective hole filling;. charge—Il and that the Tgunit which is isostructural with the
Proof: As the defect structure has a band gap, there must bewell-known S§ molecule is neutral in charge. The structures
a defect site in any row or column of the defect structure; an of the defective square lattices in these systems are shown in
infinite linear chain is gapless. Consider two defects which lie Figures 5 and 6. It may be seen that the number of defective
in the same row and for which there is no additional defect sites is 1 and 4 per unit cell for respectively;b%g9 and Cs-
between them. Let the distance between these two defect sitede;; and that there are ten potential square lattice sites per unit
beM. Define these points as (0, 0) arid,(0). Now consider cell in these systems. The fraction of occupied sitgsis
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dent supercell lattice vectors in these systems. These indepen-
dent vectors are the two new reciprocal lattice vectors of the
supercell. They may be related to the reciprocal lattice vectors
of the original 2-atom square ceR, by the formulas:

ax =7 58" — gyt

by = "lsag* + “leby* (6)

where the subscript n stands for the supercell and o for the
original subcell. The existence of two separate vectors can be
directly correlated to the two sets of parallel diagonal lines in
Figure 4b. In Figure 4b we have labeled two different nesting
vectors, k; and k,. The vectork, couples the positively
sloped diagonal lines to each other whidgcouples the nega-
tively sloped diagonal lines to each other. In fact we have
chosenk, andk, to be thea,* and b,* of eq 6. We therefore
find that the d-CDW pattern observed experimentally causes
nesting of the Fermi surface in agreement with experiment. In
the case of LaSes the agreement between themodel and

the observed unit cell is in exact agreement. The eH method
is also in close agreement with the observed unit cell (see Table
1). InTable 1, in order to facilitate comparison of the theoretical
and experimental values we have taken the projection of the
experimentak vectors along thé,, direction. The agreement
between theory and experiment forsTs;, however is not as
good. We can account for this difference by actually examining
the electronic density of states of the defect square-lattice pattern
of CsTey. An extended Hokel calculation on this system
shows that at the observed electron count o§T@s, the
Figure 7. The eH Fermi surface for the defective square lattices of defective lattice is metallic. However, had we placed just one

(a) LacSesand (b) CsTex. For comparison, the-only model Fermi additional electron into the F& sq_uare-lattice net, a band gap
surface is drawn in as a dotted line. It may be seen that the eH surfaceOf 2 €V would appear at the Fermi surface. Thus the equations
forms a sinusoidal wave around the averagmodel diagonal lines.  used for defective CDW's in this paper correctly rationalize what
the band filling must be to produce the semiconducting state,
respectively’/1o and®,0. Based on the oxidation assignments as is required by perfect HOMO-LUMO mixing and nesting
given above we may now deduce the average charge on theseector arguments. As HOMO-LUMO mixing generally renders
square lattice sites. In Lgbegwe find that of the 19 Se atoms,  the system more stable, we expect that it should be possible to
ten are isolated Se{l) atoms which are not part of the defective prepare a perfectly nested defective lattice of the type found
square lattice. Therefore the average charge on each of thefor CsTey, for the effective fractional hole band filling ¢f =
atoms in the defective square lattice-i§%. Similarly in Cs- 0.20.
Teyy, there are two neutral Feings per unit cell. The average It may be seen that while the above results may be used to
charge on the remaining six Te atoms-i§,. To deduce the rationalize the observed superstructure unit cells, they are not
fractional band occupation, of the g and g band we assume  precise enough to be of predictive value. For example, though
that for every chalcogen atom in the square lattice, four electronsthe results are highly restrictive, there are still an infinite number
lie in valence s andorbitals. As there are maximally fougp  of permissablek-vectors which couple the Fermi surface to

and g e~ per chalcogen atom we find that for {e8e9z = "/g itself. However, the majority of these choices kfvectors
and for CsTex z=%5. Applying eq 6 we find’ = (1 — "/g)(¥ would lead to direct lattice unit cells of gargantuan proportions.
10) = Y5 = 0.20 while for CgText' = (1 — 5/g)(®/10) = %40 = In this, we make a distinction between such hypothetical large

0.225. The effective band filling for these two systems is rather unit cells and the incommensurate CDW's found in numerous
similar in value. It can be noted that had there been just one nondefective systents.In the latter systems, the Fermi surface
more € per CgTey, formula unit the effective band fillings in ~ nesting actually drives the incommensurate CDW. Here the
the two systems would be equal to each other. By contrast, Fermi surface is by itself compatible with a finite sized unit
the true fractional band fillings for these two systems differ by cell. We assume that unless there is a clear driving force, the
the value 0.15. The-model Fermi surface for the effective  small direct lattice unit cells will be those most frequently found.
band filling oft' = 0.20 was previously given in Figure 4b. In  In the above cases of €18, and LaoSe&q, the observed unit
Figure 7 we show the full eH method Fermi surfaces for these cell is one of the two smallest unit cells compatible with
two systems. It may be seen that just as in the earlier examplecomplete nesting of the Fermi surface. The other smallest
for Ko.sBaps7AQTe; there is a marked sinusoidal variation in  solution is the one in whictk; = (Y5, 0) and k, = (0, 1).

the Fermi surface. Just as in this earlier case we therefore findTaking an idea from Pauling’s fifth ruéfor crystal structures,
the average,,. These values are given in Table 1. It may be we call such small cells parsimonious.

seen that_there is reasonable agreement between the el—b d RbDV-S

calculatedk,, and the simples-model result. The possible Ye5.3356120 @N Yoo&
consequences of this sinusoidal variation are considered in the The crystal structures of both lys3Se20and RbDySe; are
next section. only partially knownt®11 In the case of Dy 3S€>0 the

The structures of L@Seo and CgTey, differ from those (22) Pauling, L.The Nature of the Chemical Bop8rd ed.; Cornell
described in the previous section in that there are two indepen-University Press: Ithaca, NY, 1960.
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Figure 10. (a) The eH Fermi surface for the defective Se square lattice
of DyesssS@20 Part of thes-model Fermi surface is drawn as a dotted
line for comparison. (b) The sinusoidal curve fitting to the eH Fermi
® Fully occupied surface-solid arrows show theoretical nesting vectors alahgr b*,

while dashed arrows show the experimentally observed wavevectors.

121 2/3 occupied

Figure 9. The experimentally determined features of the RifEy
defect square-lattice structure. Shown is one superstructure unit cell.
Filled circles represent fully occupied sites. Dotted circles represent
partially occupied sites, 4 of the 12 such sites are vacant.

structure has been resolved through single-crystal X-ray dif-
fraction to be one of four possible models. The defective
square-net of one of these model solutions is shown in Figure
8. In this model, as in the other three, the unit cell contains 66
Sef"ll) atoms _OUtSIde the c_iefectlve square-lattice sheets and Figure 11. The eH Fermi surface for the defective Se square lattice
54 Se atoms in the defective square sheets. Thus there args RbDysSe. The o-model Fermi surface is drawn as a dotted line
twelve defective sites on the square lattice. The number of Dy for comparison.

atoms is determined by counting the number of dimers3($e

trimers (Sg*"), and other local clusters which exist in the close to the requirement of nesting but have been slightly shifted
defective square lattice and by assuming charge neutrality. Theso as to lead to full site occupancies. One such pair of vectors

total fraction of filled Se pand g orbitals in this system is= is k = (Y3, ¥11) and k = (Y3, —%11). As we show in Figure
4354, while the fraction of occupied sites 9% 1. We therefore 4a each of these vectors is close in value to allow nesting. Had
find t' = (1 — *¥54)(°11) = Ye. the vectors the values of§, 1/3) and {/5, —'/3), each separately

In a similar manner, we consider the RS structure. The would have led to perfect nesting.
unit cell of the defective lattice superstructure is shown in Figure  In the case of RbDySe;, the smallest unit cell compatible
9. For this system only the substructure and the cell dimensionswith the requirements of integral site occupancy_and full
of the superstructure are knowh.Of the eight Se atoms per  coupling of the Fermi surface ik, = (¥, 0) while k, =
formula unit, three are isolated Sdl() atoms which lie between (0, %s). Weissenberg photographs of this latter system indicate
the defective square lattices while the remaining five belong to k; = (Y4, 0) andk, = (0, Y/3). Thus the putative observed
the defective square lattice itself. From these factors we find a structure is twice in size to the cell predicted by the current

fractional band filling ofz = /15, with g = % andt’ = (1 — parsimonious model. It should be noted that a rather complete
110)%le) = Ya. evaluation of theu,-Hiickel energy surface of the RbESe

We now seek to find for these two systems the superstructurestructure has shown that the lowest energgkdli structure has
unit cells compatible with these values fbrandg. We shall k, = (Y2, 0) and k2 (0, Y3). Thus the error in the d-CDW

make the assumption that no square-lattice site in the trueunit cell may not be due to a failure of this principle but may
superstructure is partially unoccupied. For example, in the be due to an error in the energy surface of theké method
Dyes.sSe20 structure 215 of the sites are missing, therefore the itself. In any case, the observed unit cell in RaBg perfectly
actual superstructure of the square-lattice cell must be a multiplenests the calculated Fermi surface, as the new reciprocal lattice
of 11. We then proceed to find the smallest supercell compatible vector X, equalsk,,.
with the requirement of nesting both sets of parallel diagonal In Figures 10a and 11 we show the Fermi surfaces for the
lines of their Fermi surface. The smallest such celkjs= full eH model. It may be seen that in these systems, the
(M3, 0) while k, = (0, %17). The first vector is the maximal  sinusoidal variation is particularly great for the dgysSe 2o
nesting vector fot' = Y while the latter is required by the  system and much less marked for RBg. This sinusoidal
requirement of complete site occupancy. The final supercell is variation is due to a combination of-bonding and second
therefore & x 11b, a 33-fold increase over the original two- nearest neighbor interactions. In the case od¥5e o the
atom unit cell. variation is great enough to imply a breakdown of the pure
It may be seen that the above division kf and k; is o-only model. We show in Figure 10b the sinusoidal Fermi
somewhat arbitrarywith one vector responsible for nesting surface in such a way so as to emphasize its nestable nature.
while the other vector accounts for the full occupancy require- The key difficulty in deriving the shape of the Fermi surface
ment. It is also possible to produce this sanaex311b unit exactly is that neaF there are many states just below the Fermi
cell in which one chooses two vectors which are each metrically energy. Mixing of such states will lead to a significant energy
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: Figure 13. Dyss 33520 Structure viewed as an SOW. See caption of
Figure 12. The defect structures of (a) ls&basand (b) CsTey, viewed Figure 12 for figure conventions.

as SOW’s. Thick lines indicate wave crests, while dotted lines wave

troughs. Filled circles represent occupied sites, while dotted circles gssumed in phase is out the center of a square of the overall
represent vacant sites. square lattice. Itis clear that the indeterminacy of phase angles
6, and 6, allows one much too great a latitude in the

lowering analogous to a second-order Jafigller effect. The  construction of the theoretical SOW for eq 7 to be of significant
sinusoidal curve shown in Figure 10b is a reasonable low yractical use.

curvature approximation for the region ndar The maximal
nesting vectors for this surface are also shown. Unlike in the
case of the previous-only model it may be seen that two
vectors are required in order to achieve full nesting. One such
vector lies along the + y direction while the other lies in the

x — ydirection. lItis of interest that these two theoretical vectors
are quite close to the actual nesting vectors found in thg 8y
Se system (previously shown in Figure 4a). To aid in this
comparison we show the experimentally observed superlattice
vectors in a dotted line format. As we noted earlier, the
experimentally observed superlattice vectors differ from the
theoretically calculated ones in that they correspond to a lattice
with integral site occupancies on all square-lattice sites. Finally
in Table 1 we compare the experimental and theoretical values
for the supercell vectors. Variation between thenodel and

the eH model are on the order of 0.03 reciprocal lattice units.

We turn to Dys 3385620 In Figure 13 we show the corre-
sponding wave patterk; = (=3, 311) andk, = (Y3, 3/12). It
may be seen that the unoccupied lattice sites correspond to the
intersection of the crests of the two separate SOW’s. Justasin
the LaoSe system, the intersection of the troughs of the two
waves tends to correspond to isolated Satoms. Finally it
should be noted that in the original crystallographic work for
Dyes 3356120 there were four possible models for the crystal
structure. While each crystal model differs in their fine detalils,
all have the same pattern SOW as described above.

Conclusion

In this paper we have shown that by changing the band filling
from the actual electron band filling to an effective band-filling
we are directly able to apply the Fermi surface of the
unperturbed substructure to the defective lattice CDW problem.
We have considered four square-lattice systems with such

In our discussion of the one-dimensional d-CDW's, we d-CDW'’s LaSes RbDy:Se, CsTes, and DysSez The
showed that the lattice defects adopted a wave-like pattern inmethods used are a direct generalization of the pure CDW
which the amplitude of the nesting vector could be related to methods which are used to understand the nondefective lattice
the positions of defects in the lattice. Defects tended to occur of LaSe and KyzBasAgTe,. We have further applied a
at crests of the nesting vector waves and filled occupied sitesvariant of the principle of parsimony and have assumed that
at troughs; such patterns are site occupancy waves (SOW’s).the smallest unit cell compatible with the requirement of nesting
This correspondence could be maintained in two-dimensional of the Fermi surface and integral occupancy of lattice sites is
systems as well. We therefore consider the defect patterns inthe most commonly found superstructure. In the case efLa
the three chalcogenide square-lattice structures with well- Sgq and Dys.Seo there is an exact agreement between this
characterized defect occupation factors;gSae, CsTezr, and unit cell and that which is found experimentally. ForsTsp,
Dyes.3sS€20 In the first two systems there are two nesting the observed structure is in error by one electron to the one
vectors,k, andk,. The resultant overall amplitudé(t), has predicted by theory. Finally in the case of RkSg, the actual
the form: superstructure unit cell is double that of the most parsimonious

~ _ cell. However this larger unit cell does still allow proper nesting
A(T) = cos(Ztk,*T + 6,) + cos(2k,*T +6,) (7) of the Fermi surface.

One unfortunate difference between the defect CDW lattice
where there are now two arbitrary phase facttsandf,. The model described in this paper and the ordinary CDW model is
phase difference betweefy and 0, is variable, and as a that g, the partial site occupancy, is directly a factor in
consequence the functio®(f) can have considerable varia- determining both the Fermi surface nesting vector and the size
tion. The values off; and 6, which accord best with the  of the direct lattice unit cell, allowing the possibility of a hidden
observed crystal structures @e= 6, = 0 for LaycSe g andfy tautology. It should be noted however that the length and
= 0 and#, = & for CxsTex,. In Figure 12 we plot these waves direction of the Fermi nesting vector s multiplied by the
graphically, where we use solid lines to represent wave crestsfractional band filling. This fractional band filling is quite
and dotted lines to represent the wave troughs. There isindependent of the number In particular we note that this
agreement between the assumed positions of these waves anftactional band filling is affected strongly by the fairly random
the actual structure. In the case ofi1b3e€g this may be mix of constituent atoms sandwiched between the defective
attributed to the assumption that the two waves are in phase atsquare layers. Therefore the lengthlqj is not sufficiently
a lattice site position, while in G$e,, the point the waves are  determined byg alone. A good example of this was found in

Site Occupancy Waves
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